

palisades preservation association

March 2, 2014

Charlie Rausch,
c/o Office of Zoning Administration,
Department of City Planning,
City Hall, Room 750,
200 N. Spring Street,
Los Angeles, CA 90012

Case No.: ZA-20125-130-CDP
CEQA No: ENV-2012-131-MND
M&A Gabee, LP
16990-17000 Sunset Boulevard
Pacific Palisades, California
Supplemental Information

Dear Mr. Rausch,

The Palisades Preservation Assn. submits the following information in rebuttal to the letter of Gaines and Stacey on behalf of the applicant dated August 19, 2013 concerning the application for a Coastal Development Permit for the proposed development on the subject property. We have not responded earlier because the letter and other documents were not available for examination.

THE PROJECT IS NOT CONSISTENT WITH THE REGIONAL INTERPRETIVE GUIDELINES.

On behalf or the applicant, Gaines and Stacey argues in its August 19, 2013 letter that the Regional Interpretive Guidelines for the Pacific Palisades as adopted by the California Coastal Commission do not apply to the project. That argument is based on two premises.

The first argument is that the Regional Interpretive Guidelines do not apply because the property is not a coastal bluff within the meaning of 14 Cal. Code Regs. §13577(h) which states:

“(h) Coastal Bluffs. Measure 300 feet both landward and seaward from the bluff line or edge. Coastal bluff shall mean:

(1) those bluffs, the toe of which is now or was historically (generally within the last 200 years) subject to marine erosion; and

(2) those bluffs, the toe of which is not now or was not historically subject to marine erosion, but the toe of which lies within an area otherwise identified in Public Resources Code Section 30603(a)(1) or (a)(2). ”¹

The applicant ignores the language in §§13577(h)(1) and focuses on the language in §§13577(h)(2) and that is the focus of the Limited Bluff/Cliff Study by SASSAN Geosciences which the applicant submits in support of its argument that its project is not located on a coastal bluff. The applicant’s argument essentially is that the property is not located on a coastal bluff as defined in Public Resources Code Section 30603. But that argument only applies if the bluff is not now or was not historically subject to marine erosion as set forth in §§13577(h)(1).

This bluff was subject to marine erosion as described by the applicant in its in the Preliminary Geotechnical Engineering and Engineering Geology Investigation for 17000 – 17020 Sunset Boulevard Pacific Palisades dated November 16, 2009 where on page 4. SASSAN Geotechnical describes the properties as:

“The wave cut platform or terrace is bounded on the south by a relatively steep slope, often referred to as a *coastal bluff*, approximately 150 feet high that descends to the Pacific Coast Highway and ocean below. The *coastal bluff was formed by wave action prior to development of Pacific Coast Highway, and later modified by grading*. Bedrock exposed in the *bluff* consists of marine siltstone, siliceous shale, and sandstone of the Monterey formation. Although landslides have occurred on the *coastal bluff* to the east and west of the subject property, only surficial landslides have been mapped on the slope area below the site.” (Emphasis added.)”

Not only does Mr. Salehipour describe it as a coastal bluff, he describes it as one formed by marine erosion.

But contrary to the argument of the applicant, the provisions of Public Resources Code Section 30601 also apply.

The application of the term “coastal bluff” has to be within the context of Public Resources Code Section 30601 which reads:

¹ Gaines omits substantial parts of §13577(h) including the following language:

“Bluff line or edge shall be defined as the upper termination of a bluff, cliff, or seacliff. In cases where the top edge of the cliff is rounded away from the face of the cliff as a result of erosional processes related to the presence of the steep cliff face, the bluff line or edge shall be defined as that point nearest the cliff beyond which the downward gradient of the surface increases more or less continuously until it reaches the general gradient of the cliff. *In a case where there is a steplike feature at the top of the cliff face, the landward edge of the topmost riser shall be taken to be the cliff edge.* The termini of the bluff line, or edge along the seaward face of the bluff, shall be defined as a point reached by bisecting the angle formed by a line coinciding with the general trend of the bluff line along the seaward face of the bluff, and a line coinciding with the general trend of the bluff line along the inland facing portion of the bluff. Five hundred feet shall be the minimum length of bluff line or edge to be used in making these determinations.

“30601. Prior to certification of the local coastal program and, where applicable, in addition to a permit from local government pursuant to subdivision (b) or (d) of Section 30600, a coastal development permit shall be obtained from the commission for any of the following:

(1) Developments between the sea and the first public road paralleling the sea or within 300 feet of the inland extent of any beach or of the mean high tide line of the sea where there is no beach, whichever is the greater distance.

(2) Developments not included within paragraph (1) located on tidelands, submerged lands, public trust lands, within 100 feet of any wetland, estuary, stream, *or within 300 feet of the top of the seaward face of any coastal bluff.* (Emphasis added.)”

Contrary to the argument of Gaines on behalf of the applicant, Section 30601 neither defines what is a coastal bluff nor does it exempt the project from the application of the Coastal Act and the Regional Interpretive Guidelines — it clearly includes the project within the area that the Regional Interpretive Guidelines apply. That is consistent with the interpretation of what a coastal bluff is as defined by the Coastal Commission Staff Geologist:

“It is, however, defined in the “Glossary of Geology,” published by the American Geologic Institute (R.L. Bates and J.A. Jackson, eds., 2nd ed., 1980) as:²

- a) a high bank or bold headland with a broad, precipitous, sometimes rounded cliff face overlooking a plain or a body of water; especially on the outside edge of a stream meander; a river bluff.
- b) Any cliff with a steep broad face.”

Applicant’s other argument is that the applicant met with the Coastal Commission staff prior to submitting the project and because the project site was originally on a filled canyon, it was not a bluff.³ Besides being a clear misrepresentation and an ex parte communication, it is nothing but undocumented hearsay.⁴ Much of the fill is on top of the bluff and the canyon itself was part of the bluff. An examination of the Hoots 1925 Geologic Map shows that the site was originally on a bluff.⁵

The Coastal Commission has a history of applying the Regional Interpretive Guidelines to projects in the Pacific Palisades even though the project would not have been subject to the

² City of Dana Point Local Coastal Program Amendment 2-02, GEOTECHNICAL REVIEW MEMORANDUM by Mark Johnnson, Staff Geologist, page 5

³ It is interesting that the applicant has always asserted that this was not a canyon but an arroyo.

⁴ Applicant omits names of Commission staff or dates.

⁵ Geologic Map of the Eastern Part of the Santa Monica Mountains and Adjacent Areas, Los Angeles County, Calif. Hoots & Kew, prepared from U. S. Geologic Surveys of 1923 and 1925.

Guidelines if the applicant's interpretation of Pub. Res. Code §30601 was followed.⁶ In the Surfview Appeal, the Staff Report set forth as reason to deny the issuance of a Coastal PermitL

"The fourth factor is the precedential value of the local government's decision for future interpretations of its LCP. This is designed to avoid leaving decisions in place that could create a precedent for how the relevant provision of the LCP is to be interpreted, assuming the local government has a certified LCP. In this case, the City does not have a certified LCP for Pacific Palisades. Section 30604(a) of the Coastal Act provides that the Commission shall issue a coastal development permit only if the project will not prejudice the ability of the local government having jurisdiction to prepare a LCP which conforms with Chapter 3 policies of the Coastal Act. The subdivision of a steep hillside lot with an existing single-family residence, and the approval of a new house that *does not conform with the Hillside Dwelling Unit Density Formula set forth in the Commission's Regional Interpretive Guidelines*, sets a precedent that merits closer scrutiny by the Commission to ensure that the project will not prejudice the ability of the City to prepare an LCP." (Emphasis added.)

The proposed project does not comply with the Regional Interpretive Guidelines that set forth the density restrictions and the setbacks from the bluff lines. Thus, it would prejudice the ability of the City to prepare an LCP.

The Applicant Should Not Be Exempted From The Application Of The Regional Interpretive Guidelines .

Applicant argues that even if the project is located on a coastal bluff, the project should be exempted from the application of the Regional Interpretive Guidelines. The applicant gives several reasons for seeking this exemption.

First, applicant argues that the existence of the Malibu Village and apartment buildings at 17010 and 17070 Sunset Blvd. makes the application of the policies in the Regional Interpretive Guidelines to its property needless and that restricting the applicant's development will not achieve the purposes of the Guidelines or the Coastal Act. That argument has no merit.

First, the already developed properties were developed before the Coastal Act was adopted. They are grandfathered in. Moreover, there are a number of other vacant properties on Sunset and on the slope below the project area. The Regional Interpretive Guidelines serve as an interim zoning ordinance which limits any further development until a Local Coastal Plan is adopted that satisfies the policies of the Coastal Act.

Second, the applicant argues that the project should be exempted from the provisions of the Regional Interpretive Guidelines because it is an infill project and that State and Coastal Commission policies favor infilling. That is a specious argument. Any owner of a vacant property subject to the Regional Interpretive Guidelines is not prevented from developing the

⁶ Coastal Commission Appeal Number: A5-PPL-08-192 14984 Corona Del Mar, Aug. 2008; Application Number: 5-09-232, 17816 Porto Marina Way, Apr. 2010; Appeal Number: A5-PPL-06-272, 444 Surfview Drive, Aug. 2006

property in accordance with the Guideline and thus, infilling the property.

Third, applicant argues that the project will be beneficial because it provide a dewatering system that will be beneficial to the Malibu Bowl. That premise has been seriously questioned by the geologists employed by the owners of the Malibu Bowl properties and there is ample evidence in the record that the project could potentially result in an increase in the water tables and destabilize the hillside above th Bowl property.

Lastly, it is to the benefit of the City that the applicants project is subject to the Regional Interpretive Guidelines. With the history of very damaging landslides in the Pacific Palisades and in the vicinity below the project site, a history which has cost the City hundreds of millions of dollars to condemn or repair properties and reimburse property owners, it would be in the best interest of the City that the subject property only be developed within the Regional Interpretive Guidelines. As planned by the applicant, the development can only bring headaches for the City.

Gabee Fails To Adequately Address the Concerns About the Presence of Hydrogen Sulfide Gas On the Site.

Gaines' response to the concerns raised about the presence of hydrogen sulfide gas on the project site, Gaines refers to a Response to Comments submitted by by Sassan Geosciences on September 13, 2013 in which Mr. Salehipour opines that the odors noted in the logs will be dissipated during grading of the site and that such odors are not harmful to residents of the areas surrounding the site. The problem with that response is that Mr. Salehipour has demonstrated that he is neither a credible or reliable provider of any opinion regarding the presence of or the potential impacts of H2S gas. His record of incompetence was set forth in detail in our letter of June 15, 2013 and his September 13 Response only amplifies his incompetence and lack of candor.

First, for the first time Mr. Salehipour acknowledges that Converse consultants encountered the smell of H2S gas at depths of 30 to 60 feet below ground surface. So why didn't Sassan report this in his Preliminary Geotechnical Report to the City? He acknowledges having examined the Converse Report prior to submitting the Preliminary Geotechnical Report.

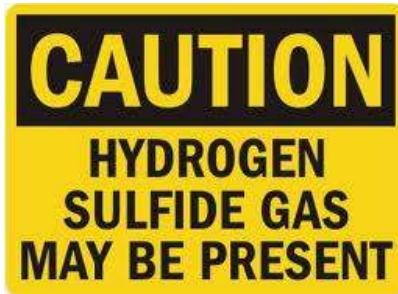
In his September 13 Report Mr. Salehipour states he did not encounter H2S gas during his field investigation of the site. Can this be believed? He prepared the boring logs for submission as part of his Preliminary Geotechnical Report just as he did when submitting his Preliminary Geotechnical Report for 17030 Sunset. In that report the boring logs for his field investigation also did not show the presence of H2S gas. Yet the boring logs that the sub-contractor who did the field investigation showed the presence of H2S gas in five of the holes. Therefore, it can be fairly argued that Mr. Salehipour doctored his boring logs to conceal the presence of the H2S on the 17030 Sunset site and because Mr. Salehipour was well aware that other boring logs besides Converse showed the presence of H2S gas on the properties at 17010 and 17020 Sunset, as well as that discovered by Converse, that he also doctored his drilling logs on the 16090 site to conceal the presence of H2S gas.

Because Mr. Salehipour has a history of doctoring drilling logs, there is only one way to verify his field investigation and that is to have new borings made with a City geologist present to verify the accuracy of the logs.

The next question is why did Mr. Salehipour go to such lengths to conceal the fact that there was H₂S gas on all the properties in the 16090-17030 Sunset area if as he states it is so easy to mitigate its impact? Any competent geologist knows that the Los Angeles Basin is one of the 14 areas in the United States that is designated as a major H₂S Prone area and that the Pacific Palisades lies within that Basin.

Figure 1. Map of Major H₂S-prone Areas in the Continental United States⁷

As noted in our letter of June 15, 2013, when the a West Los Angeles Area Planning Commissioner asked Mr. Salehipour if hydrogen sulfide was a hazardous gas, Mr. Salehipour replied that it was not. Either he was ignorant or he was deliberately misleading the Commission. It is unlikely that it was from ignorance for two reasons. First, ss tried to explain in the Addendum No. 1 to the Preliminary Geotechnical Report why some of the bore holes were so shallow that drilling had to be halted because of "dirty air", his description of H₂S. His drilling contractor would not stop drilling just because of an encounter with "dirty air" but because it was dangerous to continue drilling. When the smell of H₂S arises from a boring hole, it means that because H₂S is heavier than air and cannot rise, there was another gas present that was transporting the H₂S to the surface and that most likely is methane which is the most common carrier for H₂S. Methane is quite explosive and if the drill head set off a spark, it could blow the drill bucket right out of the hole or damage the drilling equipment.


⁷ EPA, "Report to Congress on Hydrogen Sulfide Air Emissions Associated with the Extraction of Oil and Natural Gas." EPA-453/R-93-045, October 1993. P. II-4

A second reason that he should have known that it is a hazardous gas is that it is listed as by Cal OSHA as a hazardous substance in Table AC-1 of the Cal OSHA Section 5155 which Mr. Salehipour cites in his September 13 Report, a document any licensed geologist who conducts drilling and excavation work should be very familiar with.

However, it does not appear that Mr. Salehipour is familiar with CalOSHA regulations even though he cites a number of them. The regulations that he cites are not Cal OSHA regulations but Department of Industrial Relations Regulations.⁸ First, the regulation that any employer must follow is Subchapter 7. General Industry Safety Orders, Group 16. Control of Hazardous Substances, Article 107. Dusts, Fumes, Mists, Vapors and Gases, §5155. Airborne Contaminants issued by the Department of Industrial Safety. Mr. Salehipour states that the requirements for ventilation set forth in §8403 will be complied with but that section does not mention ventilation. It only states that the orders will apply to “ Boring and pipejacking operations 30 inches in diameter or greater in size.” assuming that the borings will be that large.⁹ Mr. Salehipour is confusing §8403 with §8437.

While it was like pulling teeth to get Mr. Salehipour to admit that H2S on the project site, the cavalier attitude he has displayed toward the presence and dangers of H2S despite volumes of governmental and academic studies of its dangers, is of concern. Will he be just as cavalier about complying with the Cal OSHA regulations is of particular concern. If it had not been for this dialogue concerning the project it is questionable whether Mr. Salehipour would have taken any steps to comply with those regulations given that he did not openly acknowledge the presence of H2S or that it is a hazardous gas.

Section 8424(f) requires that employers “Prominently post a notice at all entrances to the underground jobsite to inform all entrants of the hazardous condition.” Having signs posted will alert workers of the danger and being warned, the workers will most likely ensure that all the safety requirements are in place. It should be required that the signs be in place at all times that work is being undertaken on the property.

⁸ Cal OSHA Regulations are set forth in Title 8, Division 1, Chapter 3.2, Sub-Chapter 2, Regulations of the Division of Occupational Safety and Health starting with Section 340. Industrial Safety Orders are in Chapter 4.

⁹ Mr. Salehipour states that copies of all the regulations are attached to his recommendations as Appendices. We have not been provided with the copies of the Appendices and they are not posted on Gabee's website so we are reading these sections online. However, we do not have a copy of AC 1318 (Building Code Requirements for Reinforced Concrete (AC1 318-63) and are not certain whether or not they serve the purpose.

Mr. Salehipour concludes that the H₂S found on the property is not harmful when disbursed into the environment. The problem is that H₂S is heavier than air and if it is being carried by methane which is lighter than air. The methane will quickly dissipate when it contacts the surface (provided that it has unobstructed access to the atmosphere. But the H₂S will settle unless there is sufficient wind to blow it away. There are many days in the Palisades, especially during May and June when there is no wind. Ordinarily, H₂S remains in the immediate vicinity for 18 hours.¹⁰

Moreover, if there are any low spots or enclosed areas, the H₂S will settle into these areas and while it may not be sufficiently concentrated when it is detected while escaping a boring, it can become deadly when it accumulates. Pockets of the gas can occur anywhere. It is possible for hydrogen sulfide gas to accumulate in any low or enclosed area, such as a gas venting system, mud system, cellars, pits, and tanks. Worst is that even though H₂S smells like rotten eggs, it quickly destroys a person's sense of smell so the person may think that there is no gas present.¹¹

OSHA Regulations Protects the Workers But Do Not Protect Residents.

Mr. Salehipour concludes that by sealing the boring holes with concrete that will stop the migration of the H₂S. But as previously shown, the site is underlain by fractured rock. Moreover, When H₂S gas is formed in the earth, the vapors do not just stay where they were formed. Instead, they move around, taking the path of least resistance. This means that the vapor particles move most easily when there are large open spaces for them to move through. However, because the H₂S molecules are microscopic, an open space as big as a few grains of sand would be relatively large. H₂S molecules can move laterally through the earth, or they can move up and down in the earth, depending on where they easiest path is. H₂S gas can also escape through the top of the earth into ambient air.¹² While the H₂S will not seep through the basement floor provided no cracks develop, unless the area surrounding the project is permanently sealed then gaseous molecules of H₂S will slowly seep out of the surrounding earth into the ambient air, taking the path of least resistance by making their way in between the soil, clay, and gravel particles to the surface where if there are any enclosures or low spots, it will collect, or if there are any openings in the building, it will enter through those openings and collect.

The Problems With Hydrogen Sulfide Gas in Groundwater Have Not Been Addressed.

Nor is Mr. Salehipour familiar with remediation measures. He states that it can be remediated either by air stripping (aeration) or hydrogen peroxide. Those remediation measures usually are applied to reducing or eliminating H₂S in sewers and waste water pipes. H₂S (also known as sewer gas) is common in sewers. These remediation measures however, have no application to H₂S gas that is not in water.

¹⁰ "Hydrogen Sulfide CAS#7783-6-4, Agency for Toxic Substances and Disease Registry, (ATSDR), U.S. Department of Health & Human Services, Public Health Services FAQs, July 2006

¹¹ OSHA, General Safety and Health, Hydrogen Sulfide Gas

¹² "Facts About Landfill Gas", EPA, January 2000, p.2

It is also possible to use hydrogen peroxide to remediate H₂S from ground water. That may be a serious problem on this project site, one that Gabee has not addressed. Gabee has not responded to many of the concerns raised in our June 15, 2013 letter, particularly concerning the migration of ground water. In that letter we noted a number of significant problems with E. D. Michael's Hydrology Report which undercut the assertion of Mr. Salehipour that the recommended dewatering measures will be adequate.

For example, we stated:

'While Michael examined the lateral movements of the groundwater, he does not discuss the ability of the groundwater to move vertically and thus under the buildings. This is particularly important because if the drainage system fails to evacuate the groundwater backing up behind the basement walls fast enough so that it builds up, it will not only seek to move laterally around the building but it will also seek to move downward and under the building. This would not be as much of a problem if the buildings were being constructed on solid bedrock, but they are not. Most of the bedrock beneath the building will be highly fractured siltstone or shale.¹³"

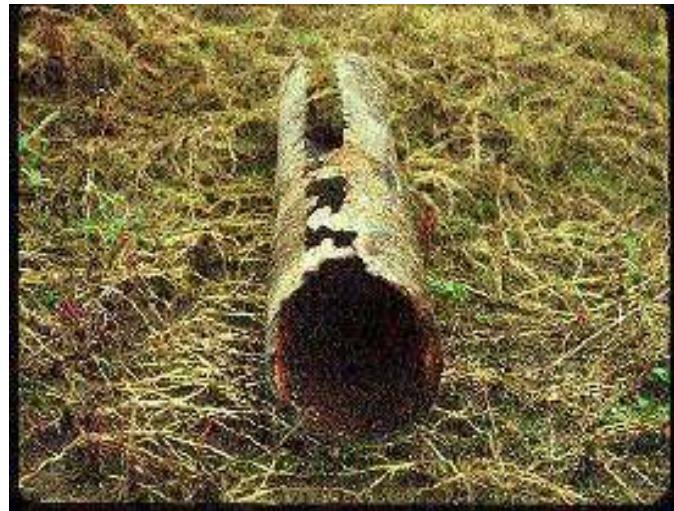
We then demonstrated that:

"The saturated hydraulic conductivity (*K*) values for highly fractured bedrock (permeous) are between 1,000 to 100,000 feet per day. In other words, the bedrock is like a sieve so that the water will flow freely downhill.¹⁴"

Gabee has not responded to this so as it concerns the presence of H₂S, it presents two problems. When H₂S is absorbed by water, it becomes hydrosulfuric acid which is highly corrosive to metals such as steel, stainless steel, and copper.¹⁵ Sulfides present in aqueous solution are responsible for stress corrosion cracking (SCC) of steel, and is also known as sulfide stress cracking.¹⁶ H₂S also causes metal to become very brittle.¹⁷ That it is a problem in this area is substantiated by the fact that corrosion of a storm drains by sulfate compounds (Jarosite) at the Malibu Village in the early 1990s caused extensive damage to the homes as well as sink holes and ground cracks.¹⁸ In presentations to the Association of Engineering Geologists, E.D. Michael, the project hydrologist, discussed the common presence of Jarosite in these particular bluffs, and its negative impact on determining the stability of structures by

¹³ Highly fractured bedrock B-5 at 13'; B- 8 at 20'; B-9 at 21 ft., B-10 at 20', B-11 at 6'

¹⁴ Bear, J. (1972). *Dynamics of Fluids in Porous Media*. Dover Publications. ISBN 0-486-65675-6


¹⁵EPA, "Report to Congress on Hydrogen Sulfide Air Emissions Associated with the Extraction of Oil and Natural Gas." EPA-453/R-93-045, October 1993. P. 1

¹⁶ Vaughan, D. J.; Craig, J. R. "Mineral chemistry of metal sulfides" Cambridge University Press, Cambridge: 1978.

¹⁷ OSHA, Job Safety Analysis (JSA), General Safety and Health, H₂S Special Precautions

¹⁸ Dale Glenn Engineering Geology, Inc. Letter to Department of City Planning, July 18, 2013

conventional means making analyses used by geotechnical engineers unreliable.¹⁹

H2S Metal Fatigue²⁰

It is also difficult to accurately measure hydrogen sulfide levels in water because they are usually complicated by the presence of other sulfide compounds. At pHs ≥ 7 , hydrogen sulfide is significantly dissociated, and the exact source of sulfide would not necessarily be known.²¹

The second problem is can the remediation measures mitigate this problem of corrosion. It is not practical to aerate ground water so that is not a viable solution. The other proposed solution would be to inject hydrogen peroxide into the ground water. But this is a very costly operation. It usually requires the pumping of all the groundwater into tanks where the hydrogen peroxide is injected into the water before it is released. That does not appear to be a practical solution in this situation. The only solution is to not use any metals in any drains, waste disposal pipes, as well as water supply pipes and irrigation pipes and this should be required if the project is approved.

The Testimony of Jeff Wilson of LADBS Before the WLAAPC Was Not Consistent With the Opinion of Mr. Salehipour Concerning Hydrogen Sulphide.

¹⁹ Jarosite is a basic hydrous sulfate of potassium and iron with a chemical formula of $\text{KFe}_3\text{+3(OH)}_6(\text{SO}_4)_2$. This sulfate mineral is formed in ore deposits by the oxidation of iron sulfides and it accounts for the red color of soil in Palisades Bluffs. The presence of jarosite, an iron-sulfate mineral, in soil is an indicator of acidic, sulfate rich conditions.

²⁰ OSHA, Job Safety Analysis (JSA), General Safety and Health, Hydrogen Sulfide Gas

²¹ "TOXICOLOGICAL PROFILE FOR HYDROGEN SULFIDE ", U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry, July 2006 , p. 127

Gaines asserts that Jeff Wilson of the Grading Division provided testimony consistent with that of Mr. Salehipour at the hearing of the West Los Angeles Area Planning Commission regarding the appeal of a the Zoning Administrator to grant a Coastal Development Permit for buildings at 17030 Sunset regarding the presence of hydrogen sulfide gas. It didn't happen that way.

As stated previously, when a Commissioner asked Mr. Salehipour if hydrogen sulfide was hazardous, Mr. Salehipour replied that it was not a hazard. At that point the Commissioner was stunned by Mr. Salehipour's reply. He then asked that Mr. Wilson, who was in the audience, to come forward and the Commissioner then asked Mr. Wilson if hydrogen sulfide was hazardous. Mr. Wilson replied that it was a hazard, the opposite of Mr. Salehipour's answer.

The Civil Engineering Report of LG Engineering Group Fails to Respond to Many of the Concerns Raised About the Adequacy of the Site's Drainage.

There were a number of issues raised concerning the the Ground Water Flow Rate Study prepared by E. D. Michael in January 2013 for the proposed project. Contrary to the claims of Mr. Gaines, it does not clarify the conclusion in the MND that the project will have either no impact or less than a significant impact on hydrology and water quality.

The issue is essential because if the drainage system is inadequate or fails, it has the potential of bringing the entire hillside down into the Malibu Village which if it occurred, would cost the City several hundred million dollars in damages as a result of negligently approving the project. The damage could exceed the almost a billion dollars the County paid for the Big Rock disaster.

First, in Glenn'Engineering Geology's letter of July 18, 2013, (which LG Engineering does not discuss) it is noted that:

"Ground water is present beneath the site. Levels measured in test borings ranged from approximately nine (9) feet below the lot surface to forty-five (45) feet below the surface. The groundwater source is attributed to a spring located north of Sunset Boulevard and they have assumed that the groundwater source will be cut off and/or controlled by a proposed tiered back drainage system. No comment was made about the presence of any seepage that was found migrating through fractures in the bedrock. A complete hydrology study of the site has not been performed."

None of the LG Engineering comments address this statement. Nor does LG address the comments we submitted in our letter of June 15, 2013 in which we noted that:

"...that because Sassan Geosciences, Inc. frequently stopped drilling when it first encountered water and never ascertained how deep the [ground] water was."

We noted that although Michael stated that:

"The matter of groundwater occurrence reported in borings B-3, B-4 , and B-6 suggests that it is almost entirely confined to the fill and therefore moves through fill southward

to the Malibu Village property..."

that:

"There is evidence that the groundwater table extends much farther to the west of the site. A contractor testified during a hearing regarding the 17030 project on March 6, 2013 that he had observed standing water in a pit dug by Sasan Geosciences, Inc. on that property."

and that other witnesses had confirmed this.

Moreover we noted that:

"Moreover, Boring B-5 shows that there is water outside the fill area. Contrary to Michael's assumption, this evidence indicates that water is entering the channel from the sides also. Michael's conclusion that the flow of water is confined to the fill, not being supported by the evidence, also means his conclusion that the flow is unidirectional is also suspect, particularly because he lacked the means to investigate the hydraulic character of the ravine. He dismisses his inability to investigate by stating that "the range of groundwater flows is so limited that possibly can enter the property" that he cannot accurately determine the *K* factor.²² He further states that to accurately determine the *K* factor, he would need a much larger number of samples than what Sasan Geosciences, Inc. has provided him."

LG does not address this issue and instead uses the imprecise data contained in the Michaeis Report. Additionally LG does not address another issue we raised in the July 15 letter which is the potential for vertical movement of the ground water which is discussed on page 9 and 10 of this letter.

Another issue that cannot be addressed is the effectiveness of the sub-drain system. No new plans have been submitted since the project was redesigned to show the sub-drains and thus the elevations cannot be determined which will dictate how effective the revised system will be. If the sub-drains are as plans currently show them, they are too high to be effective.

As Dale Glenn Engineering Geology stated in its July 18, 2013 letter:

"All the major landslide masses are at best quasi-stable and so sensitive to groundwater movements and/or to surface water infiltration that even a garden hose accidentally left a trickle overnight resulted in a landfill your large enough to close the Pacific Coast Highway. If the currently designed drain system is not adequate, the properties down slope of the site could be destabilized."

In its response to Stones concerns about the sub-drains, LG responds

²² The *K* factor is a hydrogeological term that describes the ease with which a fluid (usually water) can move through pore spaces or fractures of rock or soil. It depends on the intrinsic permeability of the material and on the degree of saturation, and on the density and viscosity of the fluid.

"The geotechnical report describes three levels of the subdrain system and recommend they should be connected to the lowest level the a vertical pipe. The report does not mention that the drainage gallery will be vertically continuous from top to bottom. Effectively connecting the three levels of perforated drainage pipe. The apparent concern is if the lower drainage pipe was clogged, the system could "back up". Therefore, as a conservative measure, a second or redundant pipe *may be* placed at the lower-level and connected to the site drainage system in the same manner as they 'primary' pipe." (Emphasis added.)

There are two problems with this response. First, one of the concerns Stone has with the subdrain system is that Mr. Salehipour has not provided the new elevations for the revised site plan. The elevations are determinitive of how effective the subdrain system will be. Secondly, there is no requirement that a second or redundant pipe be placed at the lower level so it may not happen. Third, as the response notes, the report does not mention that the drainage gallery will be vertically continuous from top to bottom and there is no way of assuring that will happen.

In conclusion, it appears that all LG Engineers did was rubber stamp Sassan's work.

There is Defiantly a Traffic Collision History Between Marquez Avenue and Deadman's Curve.

In response to a request by the Hearubg Officer, Infrastructure Engineers supposedly did an accident study for the stretch of Sunset Blvd. between Marquez Ave. and Deadman's Curve (750 feet). IE reported that checking Caltrans records, there were no reports of any accidents within the last three years. We know that even if Caltrans has no such record, there have definataly been accidents. The record in this matter shows tha there was a fatal accident and if so, there would have been a report made. Any self-respecting engineer would know that if Caltrans had no report, the engineer would have to do more investigation. There are too many confirmed accidents that have been reported for that to be true. The engineer should have checked the archives of the local newspaper. He should have talked to the West Los Angeles Accident Investigation Section. But this is typical of the sloppy engineering work that has pervaded the proposed project.

Sassan Geotechnic's Response to the GeoConcepts and Ralph Stone Comments Are Hard to Understand and Don't Rebut or Refute the Comments.

Mr. Salehipour prepared Responses to letters by GeoConcepts Inc. and Ralph Stone and Company which are dated August 14, 2013. He did not prepare responses to Dale Glen Engineering Geology, Inc. letter of July 18, 2013 or to either our June 15 or August 14, 2013 letters.

Mr. Salehipour's Responses are hard to read. Ordinarily, a responder sets forth the Comment and then answers the Comment. Mr. Salehipour did not do this and one is never certain just what comment he is answering. Moreover, Mr. Salehipour continually insists that his Reports are consistent with the comments made by GeoConcepts and Stone when they are not. Perhaps Mr. Salehipour chose to do it this way so that others would be discouraged from closely analyzing his responses. His responses often are just opinions for which he provides no facts to prove the correctness of his opinion. He is evasive. Perhaps he can fool a non-

professional with this tactic or perhaps he feels that it is sufficient to make a record.

For example Stone asked in Comment No. 1:

“The Consultants recent geologic map for the current project, and topographic map upon which it is based, do not include the easternmost corner of the property. Improvements may or may not be planned for this area, but it appears the storm drain connections may extend easterly beyond the area shown an additional slope stabilization may be required. The project map should extend East to include the entire property. The consultant should consider providing additional cross-sections and slope stability analyses of the very steep slopes located near the easternmost property corner.”

Mr. Salehipour responds:

“Is our opinion that the existing cross-sections, in particular cross-section C-C adequately address slope stability with respect to the proposed development.”

That answer is completely evasive and non-responsive. Mr. Salehipour provides no proof to support his conclusion, in fact not even an argument.

Another example is Mr. Salehipour’s response to Stone’s Comment No. 3:

“Based on the Reference 1 boring logs by CCP, a hydrogen sulfide odor was observed in Borings B-2 and B- 7near the top of the slope and a chemical odor was observed in Boring B-6 on the pad. The consultant should provide recommendations for the mitigation of the owners, as necessary, and discuss the impact of older -producing materials at depths on the proposed project.

Mr. Salehipour responded:

“It is our opinion that the odors noted in the logs will be dissipated during grading of the site. Odors from the bedrock, if present, have not been harmful to existing residents exposed to numerous local exposures of bedrock of similar composition in areas surrounding the site.”

As discussed previously, Mr. Salehipour is either very ignorant of the properties of H₂S or very evasive. There is no evidence of any exposed bedrock in the area. It is covered with earth, mostly fill. Whether or not it will be dissipated will depend on the weather at the time of drilling and also on whether it enters enclosed or low lying spaces. The scientific fact is that because it is heavier than air, it will take around 18 hours to dissipate. Additionally, there is no evidence that the earth and bedrock have been disturbed which would open up channels for the methane to carry the H₂S to the surface but drilling and hammering in the pilings will loosen up the rock and earth around and underneath the site.

Mr. Salehipour’s response to Stone’s Comment No. 4 is just as evasive.

“The consultant should test the existing earth materials and groundwater for corrosivity against proposed buried metal /concrete structures. Depending upon the results, concrete/foundation/utility specifications may need to be revised.”

Mr. Salehipour replies:

“It would be standard practice to test the materials placed as fill , after the site is graded, to evaluate corrosivity. In addition, our report dated 11/16 /2009 recommended “all concrete elements of the substructure, which are in contact with the soil, must be constructed with concrete based on cement Type V for highly corrosive soils “.

While this answered the Comment in relation to the soldier piles, the foundations and the retaining walls, (all of which should be constructed of Type V concrete), it did not answer the utility and buried metal issues, which is of great concern as previously discussed herein. In its letter of July 18k 2013, Glenn Engineering Geology stated:

“The project is now proposing to take corrosive groundwater and rather through the new storm drain, that released this Pacific water onto a public beach and into the ocean”

Moreover, the borings already clearly show the site has extensive corrosivity so why test the fill. While uncontaminated fill may form the base, the capacity for H2S to migrate will not be deterred by new fill. The applicant should be required before the commencement of any work on the site to obtain samples of the rock and test it for its corrosivity, not afterwards. What the City does not need is for the applicant to excavate and then find that the soil is corrosive which will be too expensive to remediate and thus abandon the project.

Ironically, in 1986, after Converse reported H2S as being present on this site, one of reasons that LADBS refused to issue permits for construction on this project site was it wantde more information “on the possible adverse effect of the presence of sulfur mineral and bedrock may have on the safety of the proposed residents and stability of the proposed structures.”²³

Stone stated in Comment No. 5:

“The Reference 7 report by the consultant states:

“Although landslides have occurred on the coastal bluff to the East and West of the subject property, only surficial landslides have been mapped on the slope area below the site.”

“This statement is misleading considering the slope below the site is the head escarpment of a very large bed rock landslide. Subsequent to sliding, the escarpment was breached by a canyon which is currently filled and the landslide debris was modified by grading/fill. The landslide debris and slip surface were never removed, nor was the slide mass stabilized. The slide mass is currently occupied by the Malibu Village mobile home park. The consultant should comment on the implications of past significant earth movement with respect to earth material strengths, slope stability analyses, and foundation/wall design.”

Mr. Salehipour answered:

²³ LADBS letter to Nevill Ostrick dated December 31, 1986 re: 16990 Sunset Boulevard, p. 3

"The map presented in the report prepared by SAS dated November 16, 2009, as well as subsequent reports acknowledges the landslide present under the Malibu village it is our opinion that the landslide limits, as depicted, are not a factor in the evaluation of the stability of the proposed project. This was a similar conclusions that Ralph Stone report of 1989 while working as a consultant on a similar project on the site." [Sic]

Mr. Salehipour does not attach a copy of the 1989 Report so there is no way of verifying his answer but it is unlikely because Dale Glenn was involved in preparing the 1989 report. Worse though, Mr. Salehipour only gives his opinion but fails to provide any proof that supports his opinion. In other words, "Where is the beef?"

In a February 2, 1987 letter regarding the construction of an apartment house on the same property, E. D. Michael stated:

"The proposal to place a multi-unit structure at the head of a prehistoric but nevertheless geologically quite youthful landslide along a section of coast mostly underlain by landslide debris, is in itself highly questionable in terms of good engineering practice especially because of the proximity of the Malibu Coast fault, probably 1000 feet or more south of the property... The current proposal places the proposed apartment structure across a fault which, however, is not generally considered to be a part of the Malibu Coast fault zone, and hence does not come within the purview of the Alquist- Priolo Act .nevertheless, that fault is one of the several sub parallel to the trace of the Malibu Coastal fault. Even if not a strand of the Malibu Coast fault's zone ,it is sufficiently close to that zone that should an earthquake occur, it would not be unreasonable to expect movement along it. Any fault is a surface of relative weakness, and there is no certainty that should movement occurred in the Malibu coast fault zone, and adjacent faults even though not considered active, might also undergo displacement."

The opinion of Michael supports the concerns expressed by Glenn Engineering Geologists. It also is a red flag that the City cannot afford to ignore. The same applies to Mr. Salehipour's response to Comment No. 15 in which he is just as evasive. As we have learned bitterly in the Palisades that there doesn't have to be an active landslide below a slope in order to trigger a slide. The Palisades is one of the two most active slump slide areas in the world and it doesn't take much to trigger a slide, particularly if an earthquake hits Los Angeles and the slope below the proposed project is a prime candidate.

While Mr. Salehipour is at fault in all his responses for being evasive and failing to provide proof in support of his opinions and conclusions, we will not cite any more examples because the few we have shown clearly illustrate the point. Dale Glenn will be submitting additional responses to Mr. Salehipour's Comments.

Conclusion.

The applicant has not submitted any information in its responses that would show that the property is not subject to the restrictions in the Regional Guidelines. Nor has the applicant's provided any responses to comments submitted in opposition to the project that adequately explain or respond to the concerns raised in those comments. It is still clear that the applicant has not done a sufficient job of exploring the site to be able to develop enough

information to construct the proposed project in a manner that will not destabilize the hillside. The responses do not assure anyone that the project is capable of handling a storm such as the one last week that deposited over five inches of rain in 72 hours in the Palisades.

We are not saying that it is not possible to build the project as the applicant proposes to do. What we are saying is that the applicant has not demonstrated that such a project can be constructed safely and that it will not jeopardize the safety and well being of those who reside there in the future and the property and residents that live below it.

We submit that this project as a matter of law, requires that a focused EIR be prepared that includes the haul route.

Respectfully submitted,

JACK ALLEN,
President